HBD-3 regulation of the immune response and the LPS/TLR4-mediated signaling pathway

نویسندگان

  • Chen Zhu
  • Ni-Rong Bao
  • Shuo Chen
  • Jian-Ning Zhao
چکیده

The aim of the study was to investigate the mechanisms of human β-defensin 3 (HBD-3) regulation of the immune response and the lipopolysaccharide/Toll-like receptor-4 (LPS/TLR4)-mediated signaling pathway. A TLR4 extracellular gene fragment was cloned into the pET32a plasmid to determine its expression in Escherichia coli (E. coli) and purification. A dialysis labeling method was used to stain HBD-3 with fluorescein isothiocyanate (FITC). FITC-HBD-3 was used to induce the differentiation of human peripheral blood mononuclear cells (MNC) into immature dendritic cells (imDC) in vitro. Binding reactions were established using FITC-HBD-3 and sTLR4 into cell suspensions. Flow cytometry (FCM) was used to analyze the results. Western blot analysis confirmed the identity of nuclear factor-κB (NF-κB) and was used to quantify its nuclear translocation. The results showed that, HBD-3 bound to imDC in a Ca2+-dependent manner, and sTLR4 and LPS competitively inhibited the binding. HBD-3 competitively blocked the binding of LPS and imDC by binding to imDC. HBD-3 significantly decreased the translocation of LPS-induced NF-κB into the nucleus. In conclusion, HBD-3 can competitively inhibit the binding of LPS and imDC through its binding to TLR4 molecules, which are expressed in imDC, thereby preventing LPS from inducing the maturity of the imDCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protease-activated receptor signaling increases epithelial antimicrobial peptide expression.

Epithelial tissues provide both a physical barrier and an antimicrobial barrier. Antimicrobial peptides of the human beta-defensin (hBD) family are part of the innate immune responses that play a role in mucosal defense. hBDs are made in epithelia including oral epithelium where the bacterial load is particularly great. hBD-2 and hBD-3 are up-regulated in response to bacterial stimuli. Previous...

متن کامل

Disabled-2 is a negative immune regulator of lipopolysaccharide-stimulated Toll-like receptor 4 internalization and signaling

Toll-like receptor 4 (TLR4) plays a pivotal role in the host response to lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria. Here, we elucidated whether the endocytic adaptor protein Disabled-2 (Dab2), which is abundantly expressed in macrophages, plays a role in LPS-stimulated TLR4 signaling and trafficking. Molecular analysis and transcriptome profiling of RAW264....

متن کامل

Liposomal Lipopolysaccharide Initiates TRIF-Dependent Signaling Pathway Independent of CD14

Lipopolysaccharide (LPS) is recognized by CD14 with Toll-like receptor 4 (TLR4), and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IF...

متن کامل

Regulation of innate immune responses by Toll-like receptors.

Innate immune response in Drosophila is mediated by signaling through Toll receptors. In mammals, Toll-like receptors (TLRs), comprising a large family, recognize a specific pattern of microbial components. So far, the roles of TLR2, TLR4, TLR5, TLR6, and TLR9 have been revealed. The recognition of microbial components by TLRs leads to activation of innate immunity, which provokes inflammatory ...

متن کامل

IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3.

Innate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016